Exponents and Polynomial Equations

Eric Xiao

October 19, 2019

1 Solving Exponents

Express each of the exponents below as a literal:

1. 2^{3}
2. 10^{7}
3. -6^{2}
4. 8^{-2}
5. 480349^{0}
6. $(-4)^{-3}$
7. $2^{3} \times 2^{-2}$
8. $\sqrt{64}$
9. $(-8)^{\frac{1}{3}}$

2 Scientific Notation

Express each number below in scientific notation:

1. 187
2. 5010000
3. 0.065
4. $\frac{1}{2}$
5. 6

3 Simplifying Exponents

Simplify each problem below as a single power (remove all brackets and express powers with negative exponents as fractions):

1. $2 x^{2}+4 x^{2}$
2. $y^{8} \mathrm{x} y^{-9}$
3. $\left(a^{2}\right)^{3}$
4. $\frac{2 x^{2}}{x^{5}}$
5. $(3 n)^{-3} \times(3 n)^{5}$
6. $z^{-1} \mathrm{x} z^{\frac{1}{2}}$
7. $\frac{p^{3}}{p^{\frac{4}{5}}}$

4 Word and Thinking Problems

1. Taking the cube of a number, then subtracting 8 to the result, gives an answer of 56 . What was the original number?
2. A rectangle with a length of 9 and a width of 16 has the same area as a square with certain dimensions. What is the length of the square?
3. (a) Find one solution for x to the equation $x^{2}+5 x+8=2$.
(b) Find another solution to the equation in Part (a).
(c) Find all possible solutions for x to the equation $x^{3}+2 x^{2}-x-2=0$.
(d) Given an equation in the form of $a_{1} x^{n}+a_{2} x^{n-1}+\ldots+a_{n-1} x+a_{n}=0$ (where n is an integer and the coefficients a can be any real number), how many maximum unique solutions can there be to the equation if $\mathrm{n}=5$?
